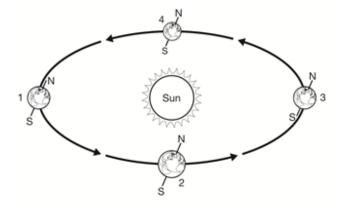
## Earth, Sun & Moon Study Guide

Use the word bank to fill in the blanks. Yes, you will use some words twice, if listed twice 🕲

- 28 High Night Sun Day Rotates 365 ¼ Direct Large Partial Rotation Total 5 East Leap Penumbra Seasons Umbra 50% Positions Equal Longest Shortest Waning 90 Equal Low Reflects Smallest Waxing Revolution Axis Extreme Lunar Solar West Closer Gravity Neap Revolves Spring Earth \_\_\_\_\_\_, or spins, on an invisible line called an \_\_\_\_\_\_. Day and night occur on different parts of 1.
- the earth because half of Earth is always illuminated by the \_\_\_\_\_\_. The half facing toward the sun is experiencing daytime and the half facing away is \_\_\_\_\_\_ time. A day on Earth is about 24 hours. Because Earth rotates
  - counterclockwise, the sun and other stars in the sky appear to move from \_\_\_\_\_\_ to \_\_\_\_\_. In fact, they are

relatively still in the sky and Earth is spinning to create this illusion!


2. Earth \_\_\_\_\_\_, or travels, around the sun on a path called an orbit. It takes \_\_\_\_\_\_ days to make

one complete revolution. Every 4 years we add a day to the end of February to adjust for the extra 6 hours each year.

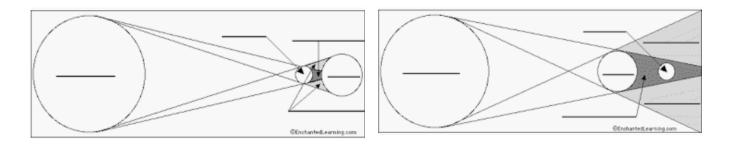
This is called a \_\_\_\_\_ year.

- 3. We have different \_\_\_\_\_\_\_ because Earth's axis is tilted 23.5 degrees. As Earth revolves around the sun, different parts of the planet receive different amounts of \_\_\_\_\_\_\_ sunlight. In the diagram below, notice how the tilted axis creates direct or indirect sunlight and different seasons. If Earth's axis were not tilted, we would not have seasonal changes because the amount of direct and indirect sunlight would not change as Earth revolves the sun. If Earth's axis were tilted more than 23.5 degrees, we would experience more \_\_\_\_\_\_ seasonal changes.
- 4. Fill the table with the diagram on the right. These words are NOT included in the word bank.

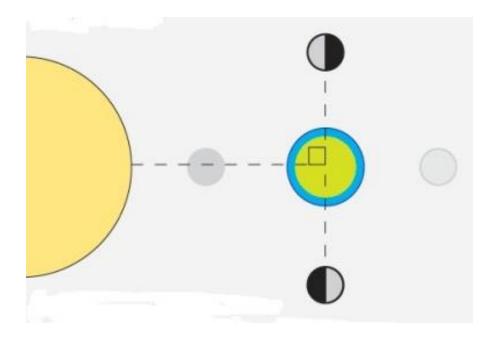
|          | Season in the Northern<br>Hemisphere | Season in the Southern<br>Hemisphere |
|----------|--------------------------------------|--------------------------------------|
| Earth #1 |                                      |                                      |
| Earth #2 |                                      |                                      |
| Earth #3 |                                      |                                      |
| Earth #4 |                                      |                                      |



5. Fill in the chart below based on the **Northern Hemisphere**. Refer to the diagram on the front of this paper.


|                                                         | Winter Solstice               | Vernal Equinox         | Summer Solstice                | Autumnal Equinox       |
|---------------------------------------------------------|-------------------------------|------------------------|--------------------------------|------------------------|
| Date                                                    | December 21                   | March 20               | June 21                        | September 23           |
| Amount of day and night                                 | daylight<br>and longest night | daylight<br>and nights | daylight<br>and shortest night | daylight<br>and nights |
| Which Earth in the<br>diagram matches<br>these details? |                               |                        |                                |                        |

- The only reason we can see the moon is because it \_\_\_\_\_\_ light from the sun. It does not produce its own light! 6. Because the moon is a sphere, like Earth, \_\_\_\_\_\_ of it is always illuminated by the sun. The reason we see different phases of the moon from Earth is because of the changing \_\_\_\_\_\_ of Earth and the moon compared to the sun. We see those changing phases because of how much of the illuminated half is facing toward Earth. We say a moon is \_\_\_\_\_\_ when the illuminated portion appears to be increasing, and we say \_\_\_\_\_\_ when it appears to be decreasing. Label the phases of the moon. (these words are not in the word bank) 7. 1 2 3 6 7 8 5 From Earth, we can only see one side of the moon because its period of \_\_\_\_\_\_ and its period of 8. \_\_\_\_\_ take the same amount of time. The moon revolves around Earth about every \_\_\_\_\_ days. We call this a month. It rotates on its axis about every 28 days also. Eclipses happen when the Earth, Sun, and moon all line up. A \_\_\_\_\_\_ eclipse happens during the 9. in the new moon phase. The moon must be directly between the earth and the sun for it to block our view of the sun. A \_\_\_\_\_\_ eclipse happens at night during a full moon phase -the moon passes through the earth's shadow. We don't see an eclipse with each full moon or new moon because the moon's orbit is tilted \_\_\_\_\_ degrees.
  - The \_\_\_\_\_\_ is the darkest part of the shadow. A \_\_\_\_\_\_ eclipse is only visible in the umbra. The


\_\_\_\_\_ is the lighter parts of the shadow, and it creates a \_\_\_\_\_\_ eclipse.

10. Label the parts and identify the type of eclipse show in each diagram. (these words are not included in the word bank)

Type of eclipse shown below:\_\_\_\_\_\_ Type of eclipse shown below:\_\_\_\_\_\_



- 11. Tides are caused on Earth because of the \_\_\_\_\_\_ of the sun and the moon. The moon has a greater effect on tides because it is \_\_\_\_\_\_ to Earth than the sun. Because Earth rotates faster than the moon revolves around us, most places on Earth have 2 \_\_\_\_\_\_ tides and 2 \_\_\_\_\_\_ tides every day. There are 2 special days each month when the Earth, sun, and moon are all lined up and the gravity is pulling together. On the new moon and full moon days we get a \_\_\_\_\_\_ tidal range. This means there is an extra high high tide and extra low low tide. These are called \_\_\_\_\_\_ tides. There is the greatest tidal range (difference between high and low tide) on spring tide days. \_\_\_\_\_\_ tides happen on the first quarter and last (3<sup>rd</sup>) quarter moon days when the gravity of the moon is pulling at a \_\_\_\_\_\_ degree angle from the gravity of the sun. This causes not so high high tides and not so low low tides on those days. Neap tide days have the \_\_\_\_\_\_ tidal range.
- 12. Label 2 spring and 2 neap tides, full and new moon, first and last guarter moons: (8 labels in all)

